Министерство образования и науки Российской Федерации Министерство образования и науки Самарской области НИЦ «Поволжская научная корпорация»

«НАУКА И ОБРАЗОВАНИЕ: АКТУАЛЬНЫЕ ВОПРОСЫ, ТЕНДЕНЦИИ, ИННОВАЦИИ»

Сборник статей международной научно-практической конференции НИЦ «Поволжская научная корпорация» (от 30 октября 2018 г.)

УДК 00(082) ББК 20; 60 Н34

Редакционная коллегия: д.соц.н., профессор **Р.Р. Галлямов**, д.п.н., профессор **М.Л. Нюшенкова**, к.и.н., доцент **А.А. Бельцер**, к.э.н., с.н.с. **Ю.А. Кузнецова**, к.э.н, доцент **О.А. Подкопаев** (отв. редактор).

Репензенты:

Галиев Гали Талхиевич – доктор социологических наук, профессор, директор Института дополнительного образования Уфимского государственного университета экономики и сервиса (г. Уфа)

Овчинников Юрий Дмитриевич — доцент кафедры биохимии, биомеханики и естественно-научных дисциплин ФГБОУ ВО «Кубанский государственный университет физической культуры, спорта и туризма», кандидат технических наук, доцент (г. Краснодар)

Н34 Наука и образование: актуальные вопросы, тенденции, инновации: сборник статей международной научно-практической конференции НИЦ ПНК от 30 октября 2018 г. / [Ред. кол.: Р.Р. Галлямов, М.Л. Нюшенкова, А.А. Бельцер, Ю.А. Кузнецова, О.А. Подкопаев]. — Самара : ООО НИЦ «Поволжская научная корпорация», 2018. — 121 с.

Сборник содержит материалы международной научно-практической конференции НИЦ «ПНК» от 30 октября 2018 г.: «Наука и образование: актуальные вопросы, тенденции, инновации:». Авторами материалов конференции предлагаются научно-обоснованные теоретико-методологические подходы и даются конкретные рекомендации, предназначенные для решения актуальных вопросов в сфере науки и образования.

Материалы публикуются в авторской редакции. За содержание и достоверность статей ответственность несут авторы. Мнение редакции может не совпадать с мнением авторов статей. Ответственность за аутентичность и точность цитат, имен, названий и иных сведений, а также за соблюдение законов об интеллектуальной собственности несут авторы публикуемых материалов. При использовании и заимствовании материалов ссылка на издание обязательна.

Сборник материалов конференции размещён в научной электронной библиотеке elibrary.ru (без индексации в РИНЦ) по договору № 2622-09/2015К от 28 сентября 2015 г.

© Авторы статей, 2018

© ООО НИЦ «Поволжская научная корпорация», 2018

ISBN 978-5-6041416-4-9

СОДЕРЖАНИЕ

ПЕДАГОГИЧЕСКИЕ НАУКИ	6
Балясова И.В., Колузанова Е.О. Использование речевых пятимину-	6
ток в реализации индивидуальных коррекционно-развивающих про-	
грамм	
Гузовская Ю.Ю. Ранняя профилактика дисграфических, дислексиче-	10
ских нарушений	
Дьячкова Н.А. Организация учебной деятельности учащихся с ис-	13
пользованием технологий дистанционного обучения	
Ефремова Е.Ю. Критерии сформированности практических умений	16
обучающихся по профессии «Портной»	
Князьевская С.В., Дворянова Е.Н., Долгова Т.П. Экологизация об-	19
разовательного пространства как ресурс развития личности дошколь-	
ников	
Ливанова Т.В., Смородина Н.Г. Психолого-педагогический проект	23
развития эмоционально-волевой сферы у детей старшего дошкольного	
возраста с нарушением речи как одна из основ взаимодействия педа-	
гога-психолога и музыкального руководителя	
Морозова М.А., Полетаева О.В. Построение организации воспита-	26
тельно-образовательного процесса ДОО в рамках формирования по-	
требности ЗОЖ у детей дошкольного возраста	
Мусабеков О.У. Учебно-познавательная деятельность студентов	32
втуза по использованию образовательных ресурсов в курсе физики	
Полосухина Л.П., Миндубаева Н.Н. Чем занять ребенка	37
Слезина Л.И. Система совместной деятельности воспитателей и роди-	40
телей по речевому развитию дошкольников	

Чеботкова М.А. Использование электронных образовательных ресур-	43
сов в совместной деятельности со старшими дошкольниками по фор-	
мированию правил безопасного поведения на улице	
Чернова Л.В. Использование наглядно-тематического материала для	47
повышения педагогической грамотности родителей в физкультурно-	
оздоровительной деятельности	
КУЛЬТУРОЛОГИЯ	51
Абдуллина О.В. Роль этнокультурного центра в сохранении нацио-	51
нальных культур народов России	
ПОЛИТИЧЕСКИЕ НАУКИ	57
Ларина А.А. Возможные пути преодоления барьеров в реализации	57
государственных программ по развитию физической культуры и	
спорта на муниципальном уровне	
Попова А.К. Цифровизация и диджитализация как современные	61
тенденции в науке и образовании в РФ	
ЮРИДИЧЕСКИЕ НАУКИ	65
Рассол А.Г., Рассол М.Г., Акопян Г.А. Соотношение понятий «де-	65
портация» и «выдворение» в миграционном праве	
Рассол М.Г., Рассол А.Г., Акопян Г.А. Нелегальная миграция как	68
глобальная угроза национальной безопасности РФ	
ЭКОНОМИЧЕСКИЕ НАУКИ	71
Дииев М.З. Использование программ автоматизации аудиторской де-	71
ятельности как основа построения внутрифирменной системы кон-	
троля качества	
ФИЛОЛОГИЧЕСКИЕ НАУКИ	74
Мусина Г.Ф. Образованность татарского народа во времена Волжской	74
Булгарии и Казанского ханства как основной фактор в развитии тер-	

ФИЗИКО-МАТЕМАТИЧЕСКИЕ И ТЕХНИЧЕСКИЕ НАУКИ	77
Астрелин М.Н., Коннов И.В. Сравнительный анализ топливной эф-	77
фективности магистральных газопроводов	
Култасов А.А., Карыбаева Г.А., Мажит Ж.Б., Абдиманапова П.Б.,	80
Адильбаева Г.А. Аналитическое решение задачи о симметричном	
растяжении пластины экспоненциального профиля с переменными ме-	
ханическими характеристиками в неравномерном температурном поле	
в общем случае	
Култасов А.А., Култасов К.А., Абдиманапова П.Б., Мажит Ж.Б.,	86
Адильбаева Г.А. Новое решение задачи о симметричном изгибе круг-	
лой несоставной пластины экспоненциального профиля в неравномер-	
ном температурном поле	
Романов И.С. Экспериментальная методика оценки коэффициента	92
инжекции в светодиодных структурах с квантовыми ямами	
InGaN/GaN	
Сенча Д.О. Исследование длины железобетонных свай с применением	96
метода импульсного эха	
Ткебучава Б.М., Розанова В.И. Представление экологического риска	105
функционалом работоспособности конструктивных звеньев трубопро-	
вода	
Тянь Жань, Чжан Чи. Функционирование диагностики трубопровод-	108
ных систем с использованием базы нормативно-технических докумен-	
тов	
СЕЛЬСКОХОЗЯЙСТВЕННЫЕ НАУКИ	111
Калачев В.А. Динамика состава березовых насаждений третьего	111
класса бонитета на территории КГБУ «Канское лесничество»	
ГЕОЛОГО-МИНЕРАЛОГИЧЕСКИЕ НАУКИ	115
Кочерова С.Д. Минералы – природные адсорбенты	115

оболочках вращения. Тезисы докладов международной научной конференции «Современные проблемы механики горных пород». – Алматы, 1997. С. 127-128.

- 2. Бажанов В.Л., Гольденблат И.И. и другие. Расчет конструкций на тепловые воздействия. М.,изд. «Машиностроение», 1969.
- 3. Костюк А.Г., К определению температурного поля и температурных напряжений в турбинных дисках, теплоэнергетика , № 3, 1956. С. 91-95.
- 4. Тюреходжаев А.Н, Касабеков С.И, Култасов К.А. Новое решение задачи о напряженно-деформированном состоянии заряда твердо-топлевных реактивных двигателей, Вестник Каз НТУ № 1-2 1997. С. 2-9.

УДК. 539-3

Култасов Амантай Ахмадиевич

к.ф.-м.н., и.о. доцента

Култасов Керимберды Ахмадиевич

к.ф.-м.н., доцент

Абдиманапова Перизат Бахытовна, ст. преподаватель Мажит Жамила Батыккызы, ст. преподаватель Адильбаева Галия Аманбаевна, ст. преподаватель Алматинский технологический университет

г. Алматы, Казахстан

Новое решение задачи о симметричном изгибе круглой несоставной пластины экспоненциального профиля в неравномерном температурном поле

Аннотация. В этой статье рассматривается получения нового решения задачи о симметричном изгибе круглой несоставной пластины экспоненциального профиля с переменными механическими характеристиками в неравномерном температурном поле.

Ключевые слова: растяжение, изгиб, экспоненциальный профиль, неравномерность, частичность, дискретизация, напряженность, деформированность, несоставной пластины.

Рассматривается симметричный изгиб круглой неоднородной упругой пластины переменной толщины экспоненциального профиля при действии поперечной силы интенсивности q_0 и по контуру силой Q. Напряженно -деформированное состояние такой пластины описывается дифференциальными уравнениями с переменными коэффициентами, которые, как правило, не имеют аналитического решения.

Рассматриваемый ниже чистый изгиб такой пластины сводится к одному дифференциальному уравнению.

$$\frac{d^2 \mathcal{G}}{dr^2} + \left(\frac{1}{r} - \frac{1}{D_M} \frac{dD_M}{dr}\right) \frac{d\mathcal{G}}{dr} + \left(\frac{v}{rD_M} \frac{dD_M}{dr} - \frac{1}{r^2}\right) \mathcal{G} + \frac{1}{rD_M} (q_r r dr - c) - \frac{1+v}{D_M} \frac{d}{dr} (\chi_T D_M) = 0$$
(1)

где \mathcal{G} - угловое перемещение $D_{\scriptscriptstyle M}$ - цилиндрическая жесткость изгиба, v - коэффициент Пуассона, r - положение точки срединной плоскости до деформации $\chi_{\scriptscriptstyle T}$ -тепловая деформация изгиба от неравномерного нагрева.

Для получения решения задачи проводиться дискретизация третьего члена уравнения в классе обобщенных функций. Граничные условия задачи примем в виде [2].

$$M_r(r_2) = 0$$

$$S(r_1) = 0$$
(2)

Пусть пластина подвергается неравномерному нагреву. При линейном изменений теплового относительного удлинения $\alpha_T T$ по толщине пластины тепловую деформацию будем аппроксимировать законом [2]

$$\chi_T = \frac{1}{h} \sum_{j=0}^{n} \Delta \varepsilon_j r^j \tag{3}$$

Кроме того жестко заделанный по внутреннему контуру $r=r_1$ пластина переменной толщины нагружена равномерно распределенными по поверхности поперечными силами интенсивности q_0 и по контуру $r=r_2$ с поперечной силой Q.

$$q_z = \sum_{j=0}^{n} q_j r^j;$$
 $q_1 = q_2 = q_3... = 0$ $C = Qr_0 + 0.5q_0 r_0^2$ (4)

Общее решение уравнения (1) будет:

$$\mathcal{G} = B + A \int e^{-\int \xi(r)dr} dr + \int e^{-\int \xi(r)dr} \left(\int \left[\eta(r) + \varsigma(r) + \varphi(r) \right] e^{-\int \xi(r)dr} dr \right) dr, \tag{5}$$

где:

$$\eta(r) = -\nu \sum \left[\ln \frac{D_N(r_k)}{D_O'} \frac{\mathcal{G}(r_{k-1})}{r_{k-1}} \delta(r - r_{k-1}) - \ln \frac{D_M(r_k)}{D_O} \frac{\mathcal{G}(r_k)}{r_{k+1}} \delta(r - r_k) \right] - \sum \left[\left(\frac{1}{r_k} \right) \mathcal{G}(r_{k-1}) \delta(r - r_{k-1}) - \left(\frac{1}{r_k} \right) \mathcal{G}(r_k) \delta(r - r_k) \right];$$
(6)

$$\xi(r) = \frac{1}{r} + \frac{1}{D_M} \frac{dD_M}{dr}; \ \varphi(r) = -\frac{1+v}{D_M} \frac{d}{dr} (\chi_T D_M); \ \varsigma(r) = -\frac{1}{rD_M} (\int q_z r dr - C)$$

Произвольные коэффициенты A и B легко получить из условий (2)

Получим решения уравнения (1) при конкретном законе изменения толщины (3)

Этому профилю пластины соответствует цилиндрическая жесткость изгиба

$$D_{M} = D_{OM}e^{-\beta x}; D_{OM} = \frac{Eh_{0}^{3}}{12(1-v^{2})}$$
 (7)

Решение задачи выполним при учете двух первых членов в (3) и первого члена в (4). Тогда общее решение уравнения (1) для принятого закона жесткости пластины (7) будет:

$$\begin{split} \mathcal{G} &= B + Ar \left[\ln \frac{r}{r_{0}} + \frac{r}{r_{0}} + \frac{r^{2}}{4r_{0}^{2}} + \frac{r^{3}}{18r_{0}^{3}} + \frac{r^{4}}{96r_{0}^{4}} + \frac{r^{5}}{600_{0}^{5}} + \dots \right] + \frac{(1+v)r_{0}^{2}}{h_{0}} \\ &\left[\Delta \varepsilon_{1} \left[e^{-\frac{r}{3r_{0}}} \left(3\frac{r}{r_{0}} - \frac{9}{2} \right) + \frac{9}{4} \left(\ln \frac{r}{r_{0}} + \frac{r}{3r_{0}} + \frac{r^{2}}{36r_{0}^{2}} + \frac{r^{3}}{486r_{0}^{3}} + \dots \right) \right] + \frac{\Delta \varepsilon_{0}}{r_{0}} \left[3e^{\frac{4}{3r_{0}}} + \frac{9}{2} \right] \\ &\left[\ln \frac{r}{r_{0}} + \frac{r}{3r_{0}} - \frac{r^{2}}{36r_{0}^{2}} + \frac{r^{3}}{486r_{0}^{3}} + \dots \right] \right] - J_{1}(r) \left\{ v \sum_{0} \left[\ln \frac{D_{M}(r_{k})}{D_{OM}} \frac{9(r_{k-1})}{r_{0}} e^{-\frac{r_{k-1}}{r_{0}}} H(r - r_{k-1}) - \right. \right. \\ &\left. - \ln \frac{D_{M}(r_{k})}{D_{OM}} \frac{9(r_{k})}{r_{0}} e^{-\frac{r_{k}}{r_{0}}} H(r - r_{k}) \right] + \sum_{0} \left[\left(\frac{1}{r_{k}} \right) \mathcal{G}(r_{k-1}) \frac{r_{k-1}}{r_{0}} e^{-\frac{r_{k-1}}{r_{0}}} H(r - r_{k-1}) - \right. \\ &\left. - \left(-\frac{1}{r_{k}} \right) \mathcal{G}(r_{k}) e^{-\frac{r_{k}}{r_{0}}} H(r - r_{k}) \right] \right\} + \frac{q_{0}r_{0}^{3}}{6D_{0}} e^{\frac{r}{r_{0}}} \left[1 + 2\frac{r}{r_{0}} - \left(\frac{r}{r_{0}} \right)^{2} \right] + \frac{Qr^{2}}{D_{0}} e^{\frac{r}{r_{0}}} \\ &\left. - \frac{d\mathcal{G}}{r_{0}} e^{\frac{r}{r_{0}}} + \frac{(1+v)r^{2}}{h_{0}r} e^{\frac{r}{3r_{0}}} \left[\left(\frac{9}{2} + \frac{3}{2}\frac{r}{r_{0}} + \frac{r^{2}}{r_{0}^{2}} \right) d\varepsilon_{1} + \left(\frac{r}{r_{0}} + \frac{3}{2} \right) \frac{d\varepsilon_{0}}{r_{0}} \right] + \frac{q_{0}r_{0}^{2}}{3D_{0}} e^{\frac{r}{r_{0}}} - \\ &\left. - \frac{r}{r_{0}} e^{\frac{r}{r_{0}}} \left\{ v \sum \left[\ln \frac{D_{M}(r_{k})}{D_{OM}} \frac{\mathcal{G}(r_{k-1})}{r_{0}} e^{-\frac{r_{k-1}}{r_{0}}} H(r - r_{k-1}) - \ln \frac{D_{M}(r_{k})}{D_{OM}} \frac{\mathcal{G}(r_{k})}{r_{0}} e^{-\frac{r_{k}}{r_{0}}} H(r - r_{k}) \right] \right\} + \sum_{0} \left[\left(\frac{1}{r_{k}} \right) \mathcal{G}(r_{k}) \frac{\mathcal{G}(r_{k})}{r_{0}} \frac{\mathcal{G}(r_{k})}{r_{0}} + \frac{r^{2}}{r_{0}} H(r - r_{k}) \right] + \frac{2r}{r_{0}} \frac{r^{2}}{r_{0}} H(r - r_{k}) \right] + \frac{r}{r_{0}} \frac{r^{2}}{r_{0}} \left[\frac{r}{r_{0}} \frac{r^{2}}{r_{0}} H(r - r_{k-1}) - \ln \frac{D_{M}(r_{k})}{D_{OM}} \frac{\mathcal{G}(r_{k})}{r_{0}} e^{-\frac{r_{k}}{r_{0}}} H(r - r_{k}) \right] \right] + \frac{r}{r_{0}} \frac{r}{r_{0}} \frac{r}{r_{0}} H(r - r_{k-1}) - \left[-\frac{1}{r_{k}} \right] \mathcal{G}(r_{k}) \frac{r}{r_{0}} \frac{r}{r_{0}} H(r - r_{k}) \right] + \frac{r}{r_{0}} \frac{r}{r_{0}} \frac{r}{r_{0}} H(r - r_{k})$$

Использование граничного условия дает:

$$A = -0.1713 \frac{q_0 r_0^2}{D_0} - 0.41745 \frac{Q r_0}{D_0}, \quad \hat{A} = -0.596 \frac{q_0 r_0^3}{D_0} - 2.0235 \frac{Q r_0}{D_0},$$

Изгибающие моменты будут иметь выражения:

$$M_{r} = D_{M} \left[\frac{d\vartheta}{dr} + \frac{v}{r} \vartheta - (1+v) \chi_{T} \right]$$

$$M_{\theta} = D_{M} \left[v \frac{d\vartheta}{dr} + \frac{1}{r} \vartheta - (1+v) \chi_{T} \right]$$
(10)

Следовательно,

$$\begin{split} &M_{r} = D_{M} \left[\left(-0.1713 \frac{g_{0}c_{0}^{2}}{D_{0}} - 0.41745 \frac{g_{0}c_{0}}{D_{0}} \right)_{r_{0}}^{r} e^{\frac{r}{c_{0}}} + \frac{(1+v)r_{0}^{2}}{h_{0}r} e^{\frac{r}{3c_{0}}} \left[\left(\frac{9}{2} + \frac{3}{2} \frac{r}{r_{0}} + \frac{r^{2}}{r_{0}^{2}} \right) d\varepsilon_{1} + \left(\frac{r}{r_{0}} + \frac{3}{2} \right) \frac{d\varepsilon_{0}}{r_{0}} \right] + \\ &\frac{g_{0}c_{0}^{2}}{3D_{0}} e^{\frac{r}{c_{0}}} + \frac{Q_{0}}{D_{0}} e^{\frac{r}{c_{0}}} - \frac{r}{r_{0}} e^{\frac{r}{c_{0}}} \left\{ v \sum \left[\ln \frac{D_{M}(r_{k})}{D_{0M}} \frac{g(r_{k})}{r_{0}} + \frac{g(r_{k})}{c_{0}} H(r - r_{k-1}) - \ln \frac{D_{M}(r_{k})}{D_{0M}} \frac{g(r_{k})}{r_{0}} \frac{g(r_{k})}{r_{0}} + \frac{r^{2}}{c_{0}} H(r - r_{k}) \right] + \\ &+ \sum \left[\left(\frac{1}{r_{k}} \right) g(r_{k-1}) \frac{r_{k-1}}{r_{0}} e^{\frac{r^{2}}{c_{0}}} + \frac{r^{2}}{c_{0}} H(r - r_{k-1}) - \left(-\frac{1}{r_{k}} \right) g(r_{k}) \frac{r^{2}}{c_{0}} + \frac{r^{2}}{c_{0}} H(r - r_{k-1}) \right] - \\ &- \frac{v}{r} \left[-0.596 \frac{g_{0}c_{0}^{2}}{D_{0}} - 2.0235 \frac{Qr_{0}}{D_{0}} \right] + \left(-0.1713 \frac{g_{0}c_{0}^{2}}{D_{0}} - 0.41745 \frac{Qr_{0}}{D_{0}} \right) r_{0}^{r_{0}} - \\ &\left[\ln \frac{r}{r_{0}} + \frac{r}{r_{0}} + \frac{r^{2}}{4r_{0}^{2}} + \frac{r^{3}}{18c_{0}^{2}} + \frac{r^{3}}{96c_{0}^{4}} + \frac{r^{5}}{600c_{0}^{5}} + \dots \right] + \frac{(1+v)r_{0}^{2}}{h_{0}} \\ &\left[\ln \frac{r}{r_{0}} + \frac{r}{r_{0}} + \frac{r^{2}}{4r_{0}^{2}} + \frac{r^{3}}{18c_{0}^{3}} + \frac{r^{3}}{96c_{0}^{4}} + \frac{r^{3}}{600c_{0}^{5}} + \frac{r^{3}}{486c_{0}^{3}} + \dots \right] + \frac{4c_{0}}{r_{0}} \left[3e^{\frac{4}{3c_{0}}} + \frac{9}{c_{0}} H(r - r_{k-1}) - \\ - \ln \frac{D_{M}(r_{k})}{D_{0M}} \frac{g(r_{k})}{r_{0}} \frac{g(r_{k})}{r_{0}} + \frac{g(r_{k})}{r_{0}} \frac{g(r_{k})}{r_{0}} + \frac{g(r_{k})}{r_{0}} \frac{g(r_{k})}{r_{0}} + \frac{g(r_{k})}{r_{0}} H(r - r_{k-1}) - \\ - \left(-\frac{1}{r_{k}} \right) g(r_{k}) \frac{g^{2}}{r_{0}} \frac{e^{\frac{4}{3}}}{r_{0}} + \frac{r^{2}}{r_{0}} \frac{g^{2}}{r_{0}} + \frac{r^{2}}{60c_{0}^{3}} + \frac{r^{2}}{r_{0}} \frac{g^{2}}{r_{0}} + \frac{g^{2}}{r_{0}} \frac{g^{2}}{r_{0}} \right] + \frac{g^{2}}{r_{0}} \frac{g^{2}}{r_{0}} - \left(1 + v \right) \frac{1}{h} \left(\Delta \varepsilon_{0} + \Delta \varepsilon_{0} r \right) \right\} \\ - \left(\ln \frac{r}{r_{0}} + \frac{r}{r_{0}} + \frac{r^{2}}{r_{0}} \frac{g^{2}}{r_{0}} + \frac{r^{2}}{r_{0}} \frac{g^{2}}{r_{0}} + \frac{r^{2}}{r_{0}} \frac{g^{2}}{r_{0}} + \frac{r^{2}}{r_{0}} \frac{g^{2}}{r_{0}} + \frac{g^{2}}{r_{0}} \frac{g^{2}}{r_{0}} \right) - \left(1 + v \right) \frac{1}{h} \left(\Delta \varepsilon_$$

Ниже рассмотрим задачу для конкретного закона изменения внешних воздействий. Положим, что $q_z=q_0,\;\chi_T=0.$

Результаты конкретного расчета представим графически.

Кривые изменения M_r при v=0,3 0,< $r < r_0$ приведена на рисунке 1.

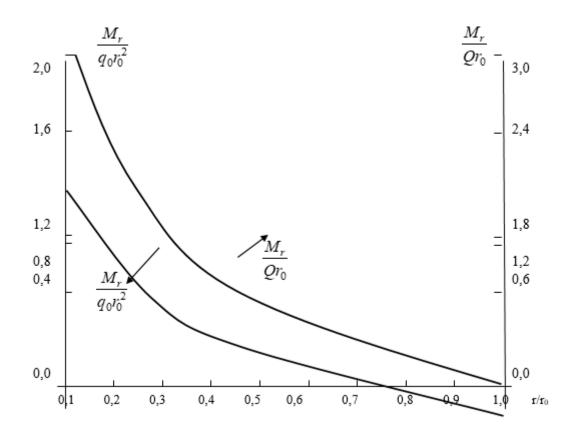


Рисунок 1 — Изгибающие моменты M_r для пластин экспоненциального профиля при действии поперечной силы интенсивности q_0 и силы Q, действующей по контуру

Решение задачи показывает, что применение метода частичной дискретизации легко реализуется для рассматриваемого закона изменения толщины пластины так же жесткости $D_{\scriptscriptstyle M}$. Кроме того, при помощи этого метода можно получить аналитическое решение задачи при действии произвольных переменных сил $q_{\scriptscriptstyle 0}(r)$ и Q(r) приложенных по поверхности.

Список использованной литературы

- 1. Бажанов В. Л., Гольденблат И.И., и др. Расчет конструкции на тепловые воздействия. М., изд-во «Машиностроение» 1969. 584 с.
- 2. Коваленко А.Д. Пластины и оболочки в роторах турбомашин. Изд. АНУССР, -Киев 1955. C.51-70, 94-120
- 3. Божанов Е.Т. Исследование проблем устойчивости упругих тел, гибких пластин и оболочек и их приложения. Диссертации на соисканиеученной степени доктора физ-матнаук. Алматы, 1997. 411с
- 4. ТюреходжаевА.Н., Касабеков С.И., Култасов К.А. Новое решение задачи о напряженно деформированном состоянии заряда твердотопливных реактивных двигателей. // Вестник КАЗ НТУ № 1-2 1997 с.2-9
- 5. Тюреходжаев А.Н., Култасов К.А, Култасов А.А. «Аналитическое решение задачи о симметричном изгибе круглой пластины переменной толщины экспоненциального профиля в неоднородном температурном поле». Международная конференция г. Алматы, 2001г., к 60-летию декана АГУ У.Уалиева // Математическое моделирование механических систем и физических процессов. С.278-271.

Романов Иван Сергеевич

младший научный сотрудник

ФГАОУ ВО «Томский государственный университет»

г. Томск, Российская Федерация

Экспериментальная методика оценки коэффициента инжекции в светодиодных структурах с квантовыми ямами InGaN/GaN

Аннотация. В работе рассматривается методика оценки коэффициента инжекции в светодиодных структурах с квантовыми ямами InGaN/GaN, включающая в себя измерения внутренней и внешней квантовой эффективности.

Ключевые слова: коэффициент инжекции, квантовая эффективность, светодиод.