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Abstract: This study developed a mathematical model for
the dispersion and transportation of pollutants in the at-
mosphere. The problem associated with the spread of
monodisperse passive tracer from an instantaneous point
source in the atmosphere assuming a partial absorption of
surface impurities is solved. One version of the computa-
tional algorithm and a theoretical justification, is that, the
applicability of numerical methods for computational ex-
periment is developed. These results are consistent with
the physical laws of the section under consideration.
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Nomenclature
α > 0 coefficient of impurity interaction with

the underlying surface;
µ > 0, ν > 0 horizontal and vertical viscosity coeffi-

cients;
σ = const > 0 interaction rates of substance environ-

ment;
φ the intensity of the impurities, migrat-

ing from the air flow;
f (x, y, z, t) function characterizing the source of

the contaminant;
h indicates that we are working in grid

spaces.
Q capacity;
t0 on time source;
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u, v, w velocity components along the axes
OX, OY , OZ, respectively;

x0, y0, z0 coordinates of the source;

1 Introduction
Atmospheric processes are developing under the joint in-
fluence of natural and anthropogenic factors of different
spatial and temporal scales. Therefore, there is a non-
trivial question of how to build a mathematical model in
order to take account of the circumstances of the two com-
peting simultaneously. On the other hand, a variety of
physical processes and the necessity to consider a wide
range of disturbances require that the models were rich
in their physical content, and their discrete approxima-
tions should provide high spatial and temporal resolution.
At the same time, it is necessary that these patterns can
be effectively implemented on computers. Taking into ac-
count the existing experience in solving problems of atmo-
spheric physics and considering the processes of moisture
exchange and interaction of the atmosphere with a ther-
mally inhomogeneous ground, it is better to take themodel
described by equations of hydrodynamics systems full of
atmosphere in the non-adiabatic approximation as the ba-
sis. Among the active factors, first of all, there is the impact
of airmasses in a limitedareaon thebackgroundprocesses
and the impact of anthropogenic sources - heat, moisture,
various impurities and changes the dynamic, hydro and
thermal characteristics of the earth’s surface [1–6].

Environmental issues are now becoming a priority, in
a view of the growing environmental degradation in many
regions due to the presence and distribution of contami-
nants in the atmosphere. One of the sources of pollution
is industrial facilities. This raises the problem of limiting
emissions of existing enterprises while maintaining their
full capacity. Also it raises the question about the opti-
mal placement of industrial facilities, taking into account
the environmental situation in aparticular region. To solve
these problems we need to develop a mathematical model
of impurity propagation from the source of pollution, con-
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sidering the factors affecting the process and the corre-
sponding sustainable computing process.

The actual process takes place at a variable speed pro-
files. Therefore, an attempt to create amathematicalmodel
of impurity propagation with variable speed profile is be-
coming interesting. In this formulation, the problem is
much more complicated because, firstly, there is a prob-
lem:what happens to the law change in velocity, secondly,
there now the complicated formof themost stable comput-
ing algorithm for solving the problem, and there are also
difficulties in the direct implementation of the algorithm
on the computer.

Presume that the boundaries of the area and the XY
planeof the values of the impurity assumed tobe zero. This
means that the size of the area is so large that the impurity
concentration becomes lower than the maximum permis-
sible.

On the surface of the earth interacts with the under-
lying surface. At the boundary of the surface layer of the
impurity value also becomes small. Now we are going to
investigate the general case of variable velocity field.

2 Research methods
Themathematicalmodel of theproblem involves the trans-
port equation with the source term. Coefficients of viscos-
ity and turbulence in the first approximation is assumed
constant. Thus, we consider the differential equation in
partial derivatives of the form:

∂φ
∂t +

∂uφ
∂x + ∂vφ∂y + ∂wφ∂z + σφ− (1)

−µ ∂
2φ
∂x2 − µ ∂

2φ
∂y2 − ν ∂

2φ
∂z2 = f (x, y, z, t)

under initial and boundary conditions:

φ = φ0(x, y, z) when t = 0; (2)
φ = 0 in Ω = {x = 0, y = 0, x = a, y = b} ;

∂φ
∂t = αφ when z = 0 (3)

and φ = 0 when Z = H;

Here φ – the intensity of the impurities, migrating
from the air flow; u, v, w – velocity components along the
axes OX, OY , OZ, respectively; µ > 0, ν > 0 – horizon-
tal and vertical viscosity coefficients; σ = const > 0 –
interaction rates of substance environment; α > 0 – co-
efficient of impurity interaction with the underlying sur-
face; f (x, y, z, t) – function characterizing the source of the

contaminant. In addressing this task, the source function
given as:

f = Qδ(x − x0)δ(y − y0)δ(z − z0)δ(t − t0),

where, x0, y0, z0 – coordinates of the source; t0 – on time
source; Q – its capacity.

A solution is sought in Ω × Ωt , where Ω = {x ∈
[0, a], y ∈ [0, b], z ∈ [o, H]}, Ωt = {o ≤ t ≤ T}.

It is assumed that the parameters of the area [a,b] are
large enough to satisfy the condition φ = 0 on the bound-
ary. The variable rate field imposes certain features in the
solution of the task. There is a problem in the approxima-
tion of the differential task (1)-(3) corresponding difference
tasks.Weconsidered the approximationof the correspond-
ing operators in (1) in the case of variable velocity profile.
First, we considered the transport equation that contains
only the convective terms, i.e. a two-dimensional task. We
write the original equation in the form:

∂φ
∂t + u

∂φ
∂x + v ∂φ∂y = f in Ω × Ωt (4)

where, Ω = {x ∈ [0, a], y ∈ [0, b]}, Ωt = {o ≤ t ≤ T}.
The velocity components generally are functions of x,

y and z. In this case, the continuity equation must be sat-
isfied:

∂u
∂x + ∂v∂y = 0 (5)

at each instant of time t. The equation (4) can be rewritten
in the form of:

∂φ
∂t + Aφ = 0 (6)

where, Aφ = u ∂φ∂x + v
∂φ
∂y

By introducing the scalar product in a conventional
manner, then:

(Aφ, φ) =
a∫︁

0

dx
b∫︁

0

(︂
u ∂φ∂x + v ∂φ∂y

)︂
φdy (7)

Taking into account (2) the expression (4) canbe trans-
formed to:

(Aφ, φ) =
a∫︁

0

dx
b∫︁

0

1
2

(︂
∂uφ2

∂x + ∂vφ
2

∂y

)︂
dy (8)

Next presume that A = A1 + A2. Then for each Aα (α =
1, 2) alone we have:

(A1φ, φ) =
1
2

a∫︁
0

dx
b∫︁

0

φ2 ∂u
∂x dy

(A2φ, φ) =
1
2

a∫︁
0

dx
b∫︁

0

φ2 ∂v
∂y dy

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(9)
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In [1] as the operators A1 and A2 it is recommended to
choose the following form

A1φ = u ∂φ∂x + φ2
∂u
∂x

A2φ = v ∂φ∂y + φ2
∂v
∂y

⎫⎪⎬⎪⎭ (10)

It is recognized that the relation A = A1 + A2 is satis-
fied. Really,

(A1 + A2)φ = u ∂φ∂x + v ∂φ∂y + φ2

(︂
∂u
∂x + ∂v∂y

)︂
=

= u ∂φ∂x + v ∂φ∂y = Aφ

by condition of continuity (5).
Let us now consider the real three-dimensional prob-

lem, described by the equation of type (1), but written in
the operator form:

∂φ
∂t +

3∑︁
α=1

Aαφ = f in Ω × Ωt (11)

where, according to the following notation given reasons:

A1φ = ∂uφ∂x − µ ∂
2φ
∂x2 − φ2

∂u
∂x ;

A2φ = ∂vφ∂y − µ ∂
2φ
∂y2 − φ2

∂v
∂y ;

A3φ = ∂wφ∂z − ν ∂
2φ
∂z2 − φ2

∂w
∂z + σφ.

This notation is more convenient when using conven-
tional splitting scheme for the numerical solution of the
problem. The solution of equation (11) is sought in

Ω = {x ∈ [0, a], y ∈ [0, b], z ∈ [o, H]}, Ωt = {o ≤ t ≤ T}.

with the following initial and boundary conditions:

φ = φ0(x, y, z) when t = 0; (12)
φ = 0 when {x = 0, x = a, y = 0, y = b} ;

∂φ
∂z = αφ when z = 0; φ = 0 when z = H.

For the numerical solution of the problem this study
will be using finite difference schemes based on splitting
method [2]. There are various approaches and methods of
splitting [1, 2, 7], for example, splitting into physical pro-
cesses and splitting the space variables. This study used
the splittingmethodwhich in the first stage includes a hor-
izontal transfer anddiffusionof impurities, and the second
stage includes the convection and diffusion in the direc-
tion OZ axis. However, before using the splitting scheme,
it is necessary to ensure the applicability of the method,

i.e., check the sign-definiteness of the operators of the orig-
inal differential problem. In other words, we checked the
execution of relations:

(Aαφ, φ) > 0, α = 1, 2, 3. (13)

Let us consider the following case: u = u(z), v =
const, w = const.

(A1φ, φ) =
a∫︁

0

b∫︁
0

H∫︁
0

(︂
∂uφ
∂x − µ ∂

2φ
∂x2 − φ2

∂u
∂x

)︂
φdxdydz =

=
b∫︁

0

dy
H∫︁

0

dz
a∫︁

0

[︂
u
2
∂φ2

∂x − µ ∂
2φ
∂x2 φ

]︂
dx =

=
b∫︁

0

dy
H∫︁

0

[︂
u
2φ

2
⃒⃒⃒H
0
−µ

(︂
∂φ
∂x

)︂
φ
⃒⃒⃒a
0

]︂
xdz+

+
b∫︁

0

dy
H∫︁

0

[︃
µ
(︂
∂φ
∂x

)︂2
]︃
dz =

= µ
b∫︁

0

H∫︁
0

a∫︁
0

(︂
∂φ(x, y, z, t)

∂x

)︂2
dxdydz > 0

According to the boundary conditions (12), as well as
of the conditions u = (z), v = const and w = const
we obtain positive definiteness of the operator A1. Simi-
larly, we can show a positive definite operator A2. It re-
mains to show positive definite operator A3. To this end,
we consider the scalar product (A3φ, φ), and the positive-
definiteness takes place when va − w

2 > 0. Really:∫︁∫︁∫︁
Ω

[︂
∂wφ
∂z − ν ∂

2wφ
∂z2 − φ2

∂w
∂z + σφ

]︂
φdΩ =

=
a∫︁

0

dx
b∫︁

0

dy
H∫︁

0

[︂
w
2
∂φ
∂z − ν ∂

2wφ
∂z2 + σφ2

]︂
dz =

= w2

a∫︁
0

b∫︁
0

φ2
⃒⃒⃒H
0
dxdy −

a∫︁
0

b∫︁
0

H∫︁
0

ν ∂
2φ
∂z2 φdxdydz+

+
a∫︁

0

b∫︁
0

H∫︁
0

σφ2dΩ = J1 + J2 + J3

Let us consider separately Jα (α = 1, 2, 3) :

J1 =
w
2

a∫︁
0

b∫︁
0

[︁
φ2(x, y, H, t) − φ2(x, y, 0, t)

]︁
dxdy =

= −w2

a∫︁
0

b∫︁
0

φ2(x, y, 0, t)dxdy;
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J2 = −
a∫︁

0

dx
b∫︁

0

dy
H∫︁

0

ν ∂
2φ
∂z2 φdz =

=

⃒⃒⃒⃒
⃒ ∂

2φ
∂z2 dz = dz φ = q
z = dφ

dz dq = ∂φ
∂z dz

⃒⃒⃒⃒
⃒ =

= −
a∫︁

0

b∫︁
0

dxdyv

⎡⎣∂φ
∂z φ

⃒⃒⃒H
0
−

H∫︁
0

(︂
∂φ
∂z

)︂2
dz

⎤⎦ =

= −
a∫︁

0

b∫︁
0

v

⎡⎣−αφ2(x, y, 0, t) −
H∫︁

0

(︂
∂φ
∂z

)︂2
dz

⎤⎦ dxdz =
=

a∫︁
0

b∫︁
0

⎡⎣vαφ2(x, y, 0, t)dxdy +
H∫︁

0

v
(︂
∂φ
∂z

)︂2
dxdydz

⎤⎦
J1 + J2 =

a∫︁
0

b∫︁
0

[︁
να − w2

]︁
φ2(x, y, 0, t)dxdy+

+
∫︁∫︁∫︁
Ω

ν
(︂
∂φ
∂z

)︂2
dΩ;

J3 =
∫︁∫︁∫︁
Ω

σφ2dΩ.

Due to a positive value w, σ, α, as well as the con-
ditions να − w

2 > 0, the operator A3 is positive definite.
Thus, the requirements of positive semidefinite operators
Aα (α = 1, 2, 3) are satisfied. But wemust assume that the
operators A1, A2, A2 have no common zeros.

Differential problem (11) – (12)weapproximate the cor-
responding difference problem. For this, as usual, built net
difference in Ω. Accordingly, the mesh moves along the
axes is denoted by ∆x, ∆y and ∆z. The coordinates of grid
points are (xi , yj , zk), where i = 0,M; j = 0, N; k = 0, K.

Differential operators Aα (α = 1, 2, 3) we approxi-
mate following difference ratios, respectively, denoted by
Λα :

Λ1φ = uk
φi+1,j,k − φi−1,j,k

2∆x − (14)

− µ
∆x2

[︀
φi+1,j,k − 2φi,j,k + φi−1,j,k

]︀
;

Λ2φ = ν
φi,j+1,k − φi,j−1,k

2∆y −

− µ
∆y2

[︀
φ1,j+1,k − 2φi,j,k + φi,j−1,k

]︀
;

Λ3φ = w
φi,j,k+1 − φi,j,k−1

2∆z −

− µ
∆z2

[︀
φi,j,k+1 − 2φi,j,k + φi,j,k−1

]︀
;

i = 0,M − 1; j = 0, N − 1; k = 0, K − 1.

where, M, N, K – respectively, are the number of grid
points in the direction of the axes OX, OY , OZ. The bound-
ary conditions are approximated by first order accuracy.

(Later we will raise the order of approximation of the
boundary conditions at H = 0). So,

φi,j,k = 0 when i = 0, i = M;
φi,j,k = 0 when j = 0, j = N;(︀

φi,j,k − φi,j,k−1
)︀
/∆z = αφi,j,k when k = 1;

φi,j,k = 0 when k = K.

For simplicity we will refer to the following grid func-
tions:

φ(t) =
{︀
φi,j,k(t)

}︀
; f =

{︀
fi,j,k

}︀
; g =

{︀
gi,j,k

}︀
, (15)

(i = 0,M − 1; j = 0, N − 1; k = 0, K − 1);
φ(t) ∈ Φh; f ∈ Fh; g ∈ Gh ,

where, h – indicates that we are working in grid spaces.
Taking into account (14), (15), we write the difference ana-
log of the original problem (11) – (12) in the following form:

φn+1 − φn
τ +

3∑︁
i=1

Λαφn = f n in Ωh × Ωτ , (16)

where, Ωh = {tn , n = 0, L, tn = n × τ}; lφ = g.
Let us note that the difference problem (14) is recorded

by means of the explicit scheme. Therefore, it is condi-
tionally stable. It will replace the equivalent of an implicit
scheme of the order of approximation. This scheme is a
scheme of two-cycle component splitting. When record-
ing (14) will assume the boundary conditions accounted
for in the structure of the operator Λα. In fact, they are
necessary in the immediate implementation of the scheme
when preparing for the programming algorithm. Thus, the
scheme is implemented in the form:(︁

E + τ2Λ
j
1

)︁
φj+2/3 =

(︁
E − τ2Λ

j
1

)︁
φj−1 (17)(︁

E + τ2Λ
j
2

)︁
φj−1/3 =

(︁
E − τ2Λ

j
1

)︁
φj+2/3(︁

E + τ2Λ
j
3

)︁(︁
φj − τf j

)︁
=
(︁
E − τ2Λ

j
3

)︁
φj−1/3(︁

E + τ2Λ
j
3

)︁
φj+1/3 =

(︁
E − τ2Λ

j
3

)︁(︁
φj + τf j

)︁
;(︁

E + τ2Λ
j
2

)︁
φj+2/3 =

(︁
E − τ2Λ

j
2

)︁
φj+1/3;(︁

E + τ2Λ
j
1

)︁
φj+1 =

(︁
E − τ2Λ

j
1

)︁
φj+2/3;

J = 1, 2, . . . , φ0 = g,

where, Λjα = Λα(tj); f j = f (tj).
On smooth solutions, having a secondorder of approx-

imation on τ, b is absolutely stable if Λ1, Λ2, Λ3 are pos-
itive definite operators. Here τ – time step, n – number of
time-layer (τL = T). Each equation of the system is imple-
mented using the sweepmethod. Here, the principal point
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Table 1: Table of regime parameters.

No Name of parameter Meaning of parameter
1 Size of field a × b × H,m 104 × 104 × 102 103 × 103 × 50 104 × 104 × 102

2 Reynolds criterion 5 67 15
3 Power source, from unit 1 1 1
4 Coeflcient of the absorption of

the impurity, 1/s
1 0 1

5 Coeflcient of impurity interaction
with the surface, 1/m

1 1 1

6 The source position in m 2000 × 1500 × 100 200 × 500 × 100 a) 2000×1500×100
b) 7000×4500×100

7 Original wind velocity, m/s 5 10 15

Figure 1: Isolines of the CO2 concentration in the maximum permis-
sible concentration shares at a height of 650m. Max CO2 − 0, 22.

Figure 2: Isolines of the CO2 concentration in the maximum permis-
sible concentration shares at a height of 10m. Max CO2 − 2, 89.

is the definition of the boundary conditions at the interme-
diate steps. However, the structure of the boundary condi-
tions is to determine the necessary parameters for the easy
sweep. Generally, for three dimensional problems, circum-

stance is one of the most difficult problems in terms of al-
gorithmic plan [8].

3 Analysis of the results
Currently, the first version prepared by a computational al-
gorithm is implemented, i.e. debugging the corresponding
program.

In conclusion,we need to note thatwe are going to test
other options of computational algorithm to identify effec-
tive option.

The problem of the spread of monodisperse passive
tracer from an instantaneous point source in the atmo-
sphere assuming a partial absorption of surface impurities
is solved. Themathematicalmodel described by equations
(11) – (12) is the longitudinal component of velocity u –
function of the coordinate z. As outlined above, the algo-
rithm is based on the method of splitting, compiled and
plotted numerical calculation program. We got impurity
distribution for the various regime parameters (Table 1).

Types of the initial profile of the longitudinal velocity
u = f (z), the Reynolds number values, have changed. Cal-
culations are performed in the presence of two instanta-
neous sources.

Here are some of the results of computer simulations
in the formof contour lines on the example of the Karacha-
ganak oil and gas field.

These results are comparable with results of other au-
thors, such as [8].
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4 Conclusions
Solution of the problem of passive distribution monodis-
perse impurities was carried out by numerical methods.
Previously developedmethod for calculating the spread of
impurities afforded solution of the problem at a constant
speed. At this stage, the algorithm for the case of variable
velocity profile was developed. These results are consis-
tent with the physical laws of the flow.

A single version of the computational algorithm and
a theoretical justification, that is, the applicability of nu-
merical methods for computational experiment was also
developed.
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