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Abstract: The mechanism of local changes of thickness of a lithosphere as a result of instability of 
deformation of an ellipsoidal lithospheric cover of Earth under the influence of the internal pressure and 
volume forces of inertia of rotation is found. The main stressed-deformed state of an elastic and viscous 
ellipsoid of rotation is considered. The equation of elastic balance and the main ratios are defined in 
degenerate elliptic coordinates. The axisymmetric task about the stressed state of an ellipsoid of rotation is 
solved at expansion under the influence of uniform pressure on its internal surface. The stressed-deformed
state of an expanding ellipsoid of the rotation subject to action of volume forces of inertia of rotation is 
investigated. Stability of deformation is investigated by a Leybenzon-Ishlinsky method.The main stressed
and deformed state is considered at an invariable form of border of a body and revolted taking into account 
turns of elements of borders of a body in the course of transition to an adjacent form of balance.
Asymmetric forms of the indignations leading to loss of stability of an ellipsoid of rotation are defined. The 
common decision of the equations of balance is defined through the biharmonic functions expressed by 
means of tesseral spherical functions. Components of indignations are expressed through three any 
constants which are found from the corresponding boundary conditions. Exponential growth of components 
of indignations in time, accompanied by oscillatory changes takes place.
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INTRODUCTION

Works [1-9] from a position of mechanics of a
deformable solid body are devoted to research of
tectonic development of Earth. Here on elastic,
viscoelastic and viscoplastic models of a lithospheric
cover of Earth global and local regularities of tectonic 
movements are studied.

The basis of the modern concept of tectonics of 
lithosphere's plates is made by the following provisions 
[10-15]:

• The precondition about division of the top part of
firm Earth into two covers, a lithosphere and an 
asthenosphere, significantly differing viscous
properties;

• The lithosphere is subdivided into limited number 
of the plates, seven large and as much the small;

• Divergent, convergent and transform borders
between plates define nature of mutual movements 
of plates;

• Movements of lithosphere's plates submit to laws 
of spherical geometry;

• The seduction completely compensates spreading;
• The reason of movement of plates in mantle

convection.

The most part of earthquakes, volcanic eruptions 
and orogeny processes occurring on a planet is dated 
for area of borders between plates. Thus concentration 
of epicenters of the strongest earthquakes on the globe 
in rather accurately limited belts defines outlines of
borders of lithosphere's plates.

The problem of delimitation of lithosphere's plates 
by  mechanic-mathematical  methods  is  unresolved 
and actual.

Methods: The mechanism of emergence of global
tectonic breaks on which there is a splitting of a
lithospheric cover into lithosphere's plates, is
investigated  by  mathematical  methods  of  the  theory 
of stability of deformable systems.

Mechanic-mathematical model: The mechanic-
mathematical  model  of  process  of  emergence of 
global  tectonic  breaks is  presented by local changes of



World Appl. Sci. J., 27 (12): 1643-1648, 2013

1644

thickness of a lithosphere as a result of loss of stability 
of deformation of an ellipsoidal lithospheric cover of 
Earth under the influence of the internal pressure and 
volume forces of inertia of rotation. The lithospheric
cover is rigidly linked to an adjacent continuous
ellipsoid of rotation. The material of a lithosphere is 
modeled by a viscoplastic body and an asthenosphere 
material-a viscous body [16-21]. Stability of
deformation is investigated by a Leybenzon-Ishlinsky
method [22, 23]. The main stressed and deformed state
is considered at an invariable form of border of a body 
and revolted taking into account turns of elements of 
borders of a body in the course of transition to an 
adjacent form of balance.

RESULTSAND DISCUSSIONS

The main stressed-deformed state of an elastic and 
viscous ellipsoid of rotation is investigated. The
equation of elastic balance and the main ratios are
defined in degenerate elliptic coordinates of s, µ, ϕ.

The ellipsoid rotates round its pivot-center
symmetry with a constant angular speed ω and is under 
the influence of the uniform pressure q attached to its 
surface in the positive direction to a normal.
The balance equations in movements look like:

21 1
grad div u u grad

1 2 G
+ ∇ = Φ

− ν
(1)

where

2 21
r

2 g
γ

Φ = − ω : Potential of centrifugal forces

u : Movement vector

G: Shift module
v: Poisson's coefficient
j = ρg: Specific weight
g: Gravity acceleration
ρ: Density

The common decision of the equations of balance 
is defined through the biharmonic functions expressed 
by means of tesseral spherical functions

( ) ( ) ( ) ( )m m m m
n n n nP s P cosm , P s P sinmµ ϕ µ ϕ (2)

Asymmetric  forms  of  the  indignations  leading 
to loss of stability of an ellipsoid of rotation are
defined.

Components of indignations are expressed through 
three any constants which are found from boundary 
conditions.

The behavior of a cover after loss of stability is 
defined by the following formulas for components of 
indignations of movements in time:

( ) ( )
3

s i i
i 1

1
u exp ift cosm f s, C

2i f =

= ϕ µ
η Σ

( ) ( )
3

i i
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1
u exp ift cosm s, C

2i fµ
=

= ϕ ϕ µ
η Σ (3)

( ) ( )
3
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1
u exp ift sinm s, C

2i fϕ
=

= ϕ ψ µ
η Σ

where i-imaginary unit, ƒ-the complex frequency of
quasistatic fluctuations, t-time,
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 µ − µ ′+  µ = − + − ν µ× µ + µ+ µ 
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( ) ( )m m
n nP s ,  P µ -Legendre's attached functions of the 1st 

sort, C1, C2, C3-any constants are defined by boundary 
conditions.

For a component of indignations of movements, 
speeds of deformations and stresses of a viscous
ellipsoid of rotation exponential growth in time,
accompanied by oscillatory changes takes place.

The stressed-deformed state of a lithospheric cover 
from an incompressible viscoplastic material directed 
by the theory of thin momentless covers is investigated. 
The ratio for extents of lengthening in a lithospheric 
cover looks like:

s 1µ ϕλ ⋅ λ ⋅λ = (5)
where

0 0,µ µ µµ ϕ ϕ ϕϕλ = λ + ε λ = λ + ε (6)

λs, λµ, λϕ-extents of lengthening in a lithospheric cover 
in the indignant condition; 0

µλ -extent of lengthening in 

the meridional direction in the main condition, 0
ϕλ -the

same in the direction of parallels and 

0 0 0 01 , 1µ µµ ϕ ϕϕλ = + ε λ = + ε

where 0 0,µµ ϕϕε ε -deformation components in the main

condition; εµµ, εϕϕ-the corresponding comp onents of 
indignations of deformations in a median surface of a 
lithospheric cover.
From a condition (5) it is found:

( )( )s 0 0

1 1

µ ϕ µ µµ ϕ ϕϕ

λ = =
λ λ λ + ε λ + ε

(7)

Multiplying   numerator   and   a  denominator   in 
a formula (7) by expressions 0 0,µ µµ ϕ ϕϕλ − ε λ − ε , it is 
received:

( )
( )( )

0 0 0 0

s 02 2 02 2

µ ϕ µ ϕϕ ϕ µµ µµ ϕϕ

µ µµ ϕ ϕϕ

λ λ − λ ε + λ ε + ε ε
λ =

λ − ε λ − ε
(8)

Considering a little sizes of indignations of
deformations to within sizes of the second order of a 
smallness, it is found:

s 0 0 0 0
1 1 µµ ϕϕ

µ ϕ µ ϕ

  ε ε
λ = − +   λ λ λ λ   

(9)

Then changing on coordinates of a median surface 
thickness of a lithospheric cover will be:

*
s 0 0 0 0

hh h 1 µµ ϕϕ

µ ϕ µ ϕ

  ε ε
= λ = − +   λ λ λ λ   

(10)

where h-thickness of a lithospheric cover in the main 
condition.

In lithosphere points, where the sum 0 0
µµ ϕϕ

µ ϕ

 ε ε
+  λ λ 

will be positive, takes place cover thinnings, where it is 
negative-thickenings, where it is equal to zero-there
thickness of a cover remains invariable.
Deformations in the main condition

000000 , tt ⋅=⋅=

where t0-some interval  of  time  in  a  vicinity  of  a 
point of linearization 0

µµξ and 0
ϕϕξ , don't depend on time. 

Components of indignations of deformations εµµ and 
εϕϕ, taking into account (9), are defined by formulas:
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Fig. 1: Lines of the maximum thinnings
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(12)

Thus, for an incompressible viscoplastic
lithospheric cover at stability loss local change of
thickness of a cover is determined by a formula (9).

The analysis of numerical results shows that at 
values of parameters of wave formation in the
meridionaldirection n = 8and in the longitudinal
direction m = 2value of internal pressure q =
108???/?? 2 correspond to the line of the maximum
thinnings on which there is a splitting of a lithospheric 
cover into the lithosphere's plates close to a modern 
outline of borders of lithosphere's plates (Fig. 1).

CONCLUSION

It is established that the main reason of emergence 
of global tectonic breaks on which there is a splitting of 
a lithospheric cover into lithosphere's plates, loss of 
stability of a lithospheric cover of Earth under the
influence of the internal pressure and volume forces of 
inertia of rotation is.
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