ИССЛЕДОВАНИЕ ВОДООТТАЛКИВАЮЩИХ СВОЙСТВ НОВЫХ НЕТКАНЫХ МАТЕРИАЛОВ

STUDY WATER REPELLENCY NEW NONWOVENS

A.A. ТАЛАСПАЕВА, Р.О. ЖИЛИСБАЕВА, А. ЖАЙКЕНОВА A.A. TALASPAEVA, R.O. ZHILISBAYEVA, A. ZHAIKENOVA

(Алматинский технологический университет, Республика Казахстан) (Almaty Technological University, Republic of Kazakhstan)

E-mail: talaspaeva83@mail.ru, rau45@mail.ru

В статье исследованы нетканые материалы с водонепроницаемым слоем с учетом поверхностной плотности и толщины. Представлена схема установки для определения водонепроницаемости материалов. Проведены исследования по водоупорности новых материалов с водонепроницаемым слоем, и выбран оптимальный вариант.

The article describes a waterproof nonwoven layer based on the mass and thickness. Presents a schematic of the definition of waterproof materials. Studies on the new waterproof material with a waterproof layer and choose the best option.

Ключевые слова: спецодежда, пакет материалов, водоотталкивающие свойства.

Keywords: protective clothing, package material, waterproof properties.

Современная БОП (боевая одежда пожарного) в целом выполняет свои функции, но имеет ряд существенных недостатков. Сложившаяся ситуация требует от производителей боевой одежды находить новые решения, разрабатывать и применять новые материалы и технологии, которые обеспечивали бы более надежную защиту пожарных.

Материалы, применяемые для изготовления БОП, в основном производятся из двух видов волокон: Kevlar и Nomex. Также применяется лен. Физико-механические показатели тканей зависят от состава волокна и способа изготовления ткани. Огнестойкость и устойчивость к агрессивным химическим средам зависят как от состава волокна, так и от дополнительной обработки готовой ткани. Лучшие показатели таких свойств имеются у ткани с обработкой Пировитексом, применяемой ЗАО "ACO". В отличие от Силотекса 97, приме-

няемого ЗАО "Элиот", эта ткань имеет более высокие показатели разрывной нагрузки и нагрузки к раздиранию.

Следует отметить, что зарубежные производители, например LION, используют в основном ткани на основе Kevlar или смесовой состав Kevlar/ Nomex. Немаловажным фактором является способность ткани не пропускать воду и позволять поту свободно испаряться, предотвращая перегревание человека. За рубежом большинство производителей, в том числе и LION, используют мембранные ткани с пленкой CROSSTECH®. В России БОП с использованием мембраны производит ЗАО "АСО".

Большинство российских производителей БОП при отсутствии мембраны задачу водонепроницаемости решают с помощью традиционных дополнительных обработок ткани полимерным покрытием, либо включением в пакет материалов дополнительного водонепроницаемого слоя.

В результате проведения анкетного опроса пожарных при эксплуатации БОП разных производителей установлено, что проблемой при пожаротушении является внезапное проникновение воды через материалы, швы и т.д. Полимерное покрытие на ткани многих производителей довольно быстро механически истирается, и "боевки" начинают намокать до истечения срока эксплуатации. Применение многослойного пакета материалов увеличивает вес боевой одежды, что также необходимо учитывать при разработке новых образцов.

В настоящее время за рубежом для улучшения свойств многих тканей используют нанотехнологии. Суть технологии – химическая обработка ткани, когда привычное понятие "пропитка" не применимо; молекула пропитывающего вещества присоединяется к волокну за счет замещения одного из своих элементов. Таким образом, можно придать волокнам ткани гидрофильные свойства при сохранении мягкости и других физико-механических показателей.

Главным препятствием для применения при производстве боевой и специальной одежды нанотехнологий является их дороговизна, однако в перспективе разработки в

этой области могут привести к обратному эффекту, поскольку можно рассмотреть возможность отказаться от дорогостоящих импортных тканей и использовать отечественные натуральные ткани с водобарьерным слоем.

Исследование ситуации путем анкетного опроса, а также изучение условий и опыта работы рядовых пожарных дают достаточно информации для подбора оптимального пакета материалов при проектировании спецодежды. Следует также учитывать взаимосвязь и взаимовлияние всех составляющих компонентов, а именно материала, конструкции и методов изготовления на защиту здоровья и жизни пожарных.

Целью настоящего исследования является определение водоупорности нетканого огнестойкого материала с пленочным покрытием.

Для определения водоупорности материалов предложены 3 образца нетканых материалов, имеющих форму круга диаметром от 160 до 165 мм.

В качестве исследуемых образцов были выбраны материалы разных слоев и сочетаний [1], характеристика которых представлена в табл. 1.

Таблица 1

No	Образцы	Склеивающий	Мембранная	Толщина	Поверхностная плот-
745		материал	пленка	материала, мм	ность, Γ/M^2
1	М1/см2	полиамид 100%	PTF 100%	2,2	232
2	М2/см5/М3/см5	полиамид 100%	PTF 100%	2,6	293
3	М2/см1/ш2	полиамид 100%	PTF 100%	3,8	437

Для испытаний образцов применяют установку по определению водоупорности материалов БОП согласно СТ РК 1495-2006. Боевая одежда пожарных [2].

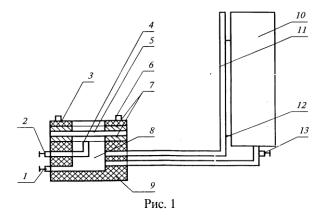


Схема установки для определения водоупорности материалов (пакетов БОП) представлена на рис. 1, где 1 — сливной кран; 2 кран для удаления воздуха из испытательной камеры; 3 — кольцо для зажима образца; 4 трубка для определения уровня воды в испытательной камере и слива; 5 — образец; 6 — "барашки"; 7 — резиновые прокладки; 8 — испытательная камера; 9 — основание камеры; 10 — емкость с водой, создающая давление на образец; 11 — трубка со шкалой деления для измерения давления на образец; 12 — крепление трубки со шкалой деления к емкости с водой; 13 — кран подачи воды в испытательную камеру. Рассмотрим методику проведения испытаний. Совместно с установкой применяют линейку $1000\,$ мм с ценой деления $1\,$ мм и секундомер с погрешностью измерения не более $\pm\,1$ с.

Основание зажимного приспособления испытательной камеры заполняют до краев водой. Перемещая линейку, совмещают деление "0" на шкале линейки с уровнем воды в мерной трубке. Образец, обращенный

наружной стороной вниз, вкладывают в основание зажимного приспособления, закрывают кольцом и плотно прижимают с помощью "барашков". Открывают кран, расположенный между емкостью с водой и испытательной камерой, и в течение 60 с доводят давление на образец до (1000 ± 5) мм вод. ст. Выдерживают образец под указанным давлением 60 с. Процесс проведения экспериментального исследования на пенетрометре MT-158 представлен на рис. 2.

Рис. 2

Время подъема воды было рассчитано по следующей формуле:

$$t = \frac{S}{V}, \tag{1}$$

где S – давление; V – скорость подъема воды.

Результаты и анализ испытаний по определению водоупорности представлены в табл. 2. и на рис. 3.

Таблица 2

№	Водоупорность,	Скорость подъема воды,	Время подъема,	Т выдержки образца
	мм вод.ст.	мм вод.ст./мин	t, мин	при 1000 мм вод.ст.
1	1000	600 ± 12	1,36	60
1	1500	600 ± 12	2,24	60
2	1000	600 ± 12	1,32	60
2	1500	600 ± 12	2,28	60
2	1000	600 ± 12	1,33	60
3	1500	600 ± 12	2,21	60

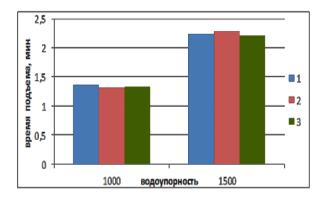


Рис. 3

В результате проведения испытаний согласно СТ РК 1495-2006 по определению водоупорности был проведен осмотр внутренней и внешней поверхностей образцов. На поверхности всех образцов полностью отсутствовали капли и следы воды. Анализируя данные, полученные при испытании образцов (табл. 2 и рис. 3) при скорости подъема воды 6±0,3 кПа/мин = 600±12 мм, при давлении 1000 и 1500 мм водного столба, установлено, что все образцы выдержали заданное время и соответствуют нормам,

представленным в СТ РК 1495-2006. Боевая одежда пожарных. Однако оптимальным вариантом для проектирования пакета материалов боевой одежды рекомендуется образец 1 в силу наименьшего значения поверхност-ной плотности и толщины.

ВЫВОДЫ

- 1. В процессе исследований нетканых материалов с разными характеристиками доказано, что за счет использования полимерной пленки образуется дополнительная износостойкость.
- 2. В результате проведенного эксперимента выявлено, что все образцы выдержали заданное время и соответствуют нормам, представленным в СТ РК 1495-2006. Боевая одежда пожарных. Для проектирования пакета материалов боевой одежды рекомендуется образец 1, поскольку он имеет наименьшее значение поверхностной плотности и толщины.
- 3. Применение нетканых материалов с водобарьерным слоем позволит решить проблемы проектирования спецодежды с

более надежными показателями по водоупорности.

ЛИТЕРАТУРА

- 1. Государственный стандарт Республики Казахстан 1495-2006. Боевая одежда пожарных.
- 2. ГОСТ 3816–81. Ткани текстильные. Методы определения гигроскопических и водоотталкивающих свойств.
- 3. Таласпаева А.А., Жилисбаева Р.О. Исследование влияния нетканых материалов на теплозащитные показатели спецодежды // Изв. вузов. Технология текстильной промышленности. 2015, №3. С.88...91.

REFERENCES

- 1. Gosudarstvennyj standart Respubliki Kazahstan 1495-2006. Boevaja odezhda pozharnyh.
- 2. GOST 3816–81. Tkani tekstil'nye. Metody opredelenija gigroskopicheskih i vodoottalkivajushhih svoistv.
- 3. Talaspaeva A.A., Zhilisbaeva R.O. Issledovanie vlijanija netkanyh materialov na teplozashhitnye pokazateli specodezhdy // Izv. vuzov. Tehnologija tekstil'noj promyshlennosti. 2015, №3. S.88...91.

Рекомендована кафедрой технологии, конструирования изделий и товаров. Поступила 18.06.16.

№ 6 (366) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 2016